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Summary 

 

Detailed geomodelling within high-resolution, three-

dimensional (3D) seismic data is a time-consuming and 

arduous process. However, recent advances in deep learning 

practices are accelerating the speed at which geologic 

features can be mapped. While most geoscientific deep 

learning applications have focused on mapping features such 

as faults and salt, we propose a novel, interactive deep 

learning methodology that enables the interpreter to 

characterize a petroleum system by labeling and training 

networks on associated elements proven by exploration well 

data. This study uses available data from the complex 

Central Graben Basin within the North Sea, which contains 

many producing fields. 

 

The F3 seismic survey contains several seismic 

representations of petroleum system elements such as 

migration chimneys and dry gas shows. Dry gas migrates 

vertically through overlying strata and along faults. Results 

from well-trained deep learning networks can accurately 

map various petroleum elements of the basin, which is 

traditionally very challenging and time-consuming. These 

results were obtained in a fraction of the time compared to 

traditional interpretation workflows and enables 

geoscientists to better characterize regional trends while also 

making observations at the petroleum system scale.  

 

Introduction 

 

Petroleum system mapping is a critical stage of hydrocarbon 

exploration. A persistent challenge facing the geoscience 

community is the ability to evaluate large datasets quickly 

and accurately for reservoir potential. Petroleum system 

elements are useful for describing the actions of hydrocarbon 

systems by focusing upon the characteristics and events of a 

specific geologic system (Waples, 1994). These models, if 

designed and integrated properly, can represent a powerful 

exploration tool (Mancini et al., 2003). However, these 

models must often go through several revisions, and creating 

them quickly is a significant task. In recent years, several 

approaches with sophisticated neural network architectures 

have shown potential when applied to tedious seismic 

interpretation tasks (LeCun et al., 2015; Bandura et al., 

2018). These deep learning workflows accelerate such tasks, 

shifting the focus of geoscientists from exhaustively 

digitizing features on a workstation to critical evaluation and 

risk/resource analysis. By combining the accelerated 

workflows offered by deep learning with established play 

analysis procedures, geoscientists can generate and evaluate 

these models in a fraction of the time it takes using 

traditional interpretation methods, to better understand the 

generation, accumulation, and entrapment of hydrocarbons.  

 

Geologic Background 

 

The study area lies in the triple rift system of the Central 

Graben, Viking Graben, and Moray Firth Basins where the 

structural province is defined by Late Jurassic and Early 

Cretaceous extensional tectonics due to failed rifting 

(Gautier, 2005; Silva et al., 2019). This plays a fundamental 

role in the distribution of hydrocarbons (Schroot and 

Schüttenhelm, 2003; Gautier, 2005; Silva et al., 2019). 

 

Figure 1: Location of the study area (pink boundary) within the 
North Sea. Seafloor bathymetry map taken from topex.ucsd.edu. 

 

The Zechstein Group is composed of carbonate and 

evaporite rocks, with several salt structures within the study 

area providing localized structural control (Figure 2, zone 1) 

(Silva et al., 2019). Zone 2 within Figure 2 contains the 

Germanic Trias, Altena, Rijnland and Chalk Groups. The 

Lower Triassic Germanic Trias Group is composed of shales 

and siltstones interbedded with sands, whereas the Upper 

portion contains mostly anhydrous evaporates (Gautier, 

2005, Silva et al., 2019). The Middle Jurassic Altena Group 

is characterized by thick marine shales and the Early 

Cretaceous Rijnland Group predominantly contains 

siliciclastics (Silva et al., 2019). Finally, the Late Cretaceous 

Chalk Group is composed of chalk and argillites with 

polygonal faulting (Figure 2) (Silva et al., 2019). The last 
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significant regional event was during the Mid-Miocene, 

resulting in the Mid-Miocene unconformity (Figure 2, 

orange horizon) (Schroot and Schüttenhelm, 2003, Silva et 

al., 2019). The Cenozoic North Sea Supergroup has the most 

significant presence within the dataset and is characterized 

by strong subsidence and significant halokinesis from the 

Zechstein Group salt (Figure 2, zones 3-6) (Silva et al., 

2019).  

 

The hydrocarbons in the study area originate from a singular 

petroleum system known as the Kimmeridgian Shales Total 

Petroleum System (TPS) (Schroot and Schüttenhelm, 2003). 

TPS source rocks were deposited from the Late Jurassic to 

Early Cretaceous, during a period of intensive extension and 

rifting (Schroot and Schüttenhelm, 2003). Several large 

faults and vertical gas migration chimneys exhibit how the 

hydrocarbons migrated into the North Sea Supergroup 

shallow reservoirs (Figure 2) (Schroot and Schüttenhelm, 

2003; Gautier, 2005). 

 

Figure 2: Regional interpretation of the F3 seismic survey, North 

Sea. The F3 reservoir is visible on the left side of the line, at ~500 
ms. Other petroleum system elements visible on the line include 

migration cloud, fault (charge conduit), and leak-off.  
 

We present a methodology that enables a high degree of 

interactivity between the deep learning process and the 

geoscientist. Therefore, the network acts as an extension of 

the interpreter to augment mapping capabilities of important 

geological features such as faults, reservoirs, migration 

clouds, and salt. In this case study, we will use a series of 

networks to map various petroleum system elements within 

the F3 seismic survey. 

 

Methodology and Deep Learning Network 

 

Machine learning techniques to help analyze and interpret 

geologic patterns have shown significant promise over 

recent years (LeCun et al., 2015; Ronneberger et al., 2015; 

Bandura et al., 2018; Chopra and Marfurt 2018; Silva et al., 

2019; Chenin et al., 2020). However, our methodology 

differs from existing ones due to the high level of 

interactivity it provides between the deep learning process 

and the interpreter. Therefore, we refer to this process as 

interactive deep learning.  

 

The geoscientist does not rely on “black box” utilities to 

generate high-quality results since all network parameters 

are exposed. With our workflow, the data labeling, network 

training, and prediction happen in real-time. Geoscientists 

work in tandem with the network and provide instantaneous 

feedback to the algorithm’s prediction (or inference). They 

can simultaneously train and provide active reinforcement to 

the deep learning network until the desired prediction is 

achieved. Because of this immediate feedback, quality 

control is embedded within the labeling and training 

processes. This removes the disadvantage of tedious and 

time-consuming quality control and reiteration of black box 

outputs. 

 

Figure 3 highlights the important differences between 

interactive and traditional deep learning approaches. 

Proprietary technology such as compression and random 

access to seismic data makes interactive deep learning 

possible. Other currently available deep learning methods 

require significant data preparation steps before initiating 

training. This is due to the static nature of TensorFlow record 

files, which cannot be modified on the fly. Our methodology 

shows how this unnecessary burden is avoided (Figure 3). 

 
 

Figure 3: Comparison between traditional and interactive deep 

learning for seismic interpretation. With traditional deep learning, 
the process starts with SEGY data and image file creation and 

randomization. With interactive deep learning, steps 2 through 5 are 

eliminated. 
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The deep learning architecture presented is based on a 

Convolutional Neural Network (CNN) that reduces the 

dimension between the features (seismic data) and labels 

(interpreter input). This reduction uses “valid padding” 

during the convolutions to maximize the information sent to 

the network (Figure 4). Padding refers to the number of 

pixels added to an image when processed by the kernel of a 

neural network. Padding “same” can be detrimental to the 

network since it fills the convolutions with zeros and can 

omit some of the data near the edges of the patches. 

Following our methodology, deep learning models can now 

be operated interactively, responding in real-time to 

interpreter input. 

 

Optimal CNN inputs require the following: 

 

1. Patches from the seismic (features) and input 

interpretations (labels) by the geoscientist. 

 

2. Random access to the seismic features and 

interpreter label pairs. The features are in 3D, 

whereas the labels are in 2D. Random data access is 

key for enabling immediate feedback on the 

algorithm’s inference.  

 

3. There should be an equal and sequential number of 

truth and non-truth samples (e.g., the same amount 

of non-fault examples as faults).  

 

 
 

Figure 4: Example of a CNN architecture from Ronneberger et al., 

2015 using a combination of “convolution” and “down-
sampling/max pooling” operations. The number or combination of 

these operations can vary for many different reasons and depends on 

the type of problem being solved. It is important to note that our 
method uses slightly different input and output sizes compared to 

the model in the figure.  

 

F3 3D Seismic Data 

 

The F3 post-stack, time migrated survey is located roughly 

180 km offshore Netherlands and covers approximately 340 

km2 in the Central Graben Basin, North Sea (Figure 1) (Silva 

et al., 2019). This data set is SEG positive polarity, where 

the sea floor is observed as a trough.  

 

Results 

 

A total of 7 inlines (IL) and 5 crosslines (XL) were labeled 

to identify reservoir and migration cloud petroleum system 

elements, which is 0.63% of the dataset. For salt 

identification, 7 ILs and 5 XLs were labeled, which 

amounted to labeling 0.58% of the data. Each petroleum 

system element network was trained separately and used 

different label distributions. Table 1 shows network details 

and individual training times. With a 16 GB NVIDIA RTX 

Tesla M60 graphics card, each epoch took roughly 45 

seconds.  

 

 
Table 1: Details and timing for the individual networks. 

 

Upon completing the initial training cycle for all networks, 

the interpreter then reviews the inference superimposed on 

the amplitude data and optimizes their label sets accordingly. 

For example, in areas where the interpreter sees a false 

positive prediction, they can reinforce that the prediction is 

false by declining to co-locate labels with the erroneous 

prediction. The network continues training, and the labeling 

process is repeated until the desired level of accuracy is 

achieved. Figure 5 shows examples of inference from 

separate networks trained on different petroleum system 

elements. 

 

Discussion 

 

Overall, our interactive methodology substantially improves 

interpretation efficiency while helping to reduce human 

error. As a result of the interpreter working in tandem with a 

deep learning engine, the network will suggest similar 

features within the seismic section, such as potential 

reservoir running room that may have been originally 

overlooked by the geoscientist. The network can be trained 

on any feature visible in the seismic data and differentiates 

between subtle changes in seismic character that exemplifies 

multiple components of a complex system. The subtle 

geologic features identified by the algorithm enables 
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geoscientists to gain detailed insights into the complex 

petroleum systems of the North Sea in a fraction of the time 

it takes using traditional interpretation methods. 

 

 
Figure 5: Network inference from A) migration cloud; B) salt 

(structural focus); C) leak-off; and D) charged reservoir-quality 

rock. 

 

 
 

Figure 6: Raw output objects visualized with seismic amplitude 
data. Salt (orange) with deformed shale (grey) provides structural 

control for the migration clouds (pink), some of which underlie the 

two main reservoirs (red) identified using deep learning in the area. 
Smaller gas accumulations along fault planes are also shown, and 

the approximate location of exploration well F3-01 is shown in light 

blue. 

 

Conclusions 

 

Interactive deep learning has the potential to significantly 

accelerate the process of petroleum system element mapping 

and reservoir identification. This new deep learning 

methodology ultimately improves the quality of the 

interpretation while reducing human error. Geoscientists 

work in tandem with the algorithm until the results are 

satisfactory. Therefore, inferences are as reliable or more 

reliable as manual interpretation. These results have 

important implications for characterizing the remaining 

reservoir running room within the basin while capturing the 

basin’s complex petroleum system. 
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